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Abstract. Accurate assessment of the value of the incompressibility coefficient, K, of symmetric nuclear
matter, which is directly related to the curvature of the equation of state (EOS), is needed to extend
our knowledge of the EOS in the vicinity of the saturation point. We review the current status of K
as determined from experimental data on isoscalar giant monopole and dipole resonances (compression
modes) in nuclei, by employing the microscopic theory based on the random-phase approximation (RPA).

PACS. 21.65.+f Nuclear matter – 24.30.Cz Giant resonances – 21.60.Jz Hartree-Fock and random-phase
approximation

1 Introduction

It is well known that the equation of state (EOS), E/A =
E(ρ), of symmetric nuclear matter (SNM) is a very impor-
tant ingredient in the study of nuclear properties, heavy-
ion collisions, neutron stars and supernovae. Experimen-
tally, we have accurate data on the saturation point of the
EOS, namely (ρ0, E(ρ0)). From electron and hadron scat-
tering experiments on nuclei, one finds a constant central
density of ρ0 = 0.16 fm−3, and from the extrapolation of
empirical mass formula, we have E(ρ0) = −16MeV for
SNM. Since at saturation dE

dρ |ρ0
= 0, one has

E(ρ) = E(ρ0) +
1

18
K

(

ρ− ρ0

ρ0

)2

+ . . . , (1)

where

K = 9ρ2
0

d2(E/A)

dρ2

∣

∣

∣

ρ0

(2)

is the SNM incompressibility coefficient. Therefore, a very
accurate value of K is needed to extend our knowledge of
the EOS in the vicinity of the saturation point.

There have been many attempts over the years to de-
termine the value of K by considering properties of nuclei
which are sensitive to a certain extent to K (see ref. [1]).
In a macroscopic approach analysis of experimental data
of a certain physical quantity, K appears in the expression
for the physical quantity and the value of K is determined
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by a direct fit to the data. In a microscopic approach, one
considers various effective two-body interactions which are
associated with different values of K but reproduce with
comparable accuracies the experimental data of various
properties of nuclei, such as binding energies and radii.
One then determines the effective interaction which best
fits the experimental data for a physical quantity which is
sensitive toK. We mention, in particular, the attempts [1–
5] of considering as physical quantities: nuclear masses,
nuclear radii, nuclear scattering cross-sections, supernova
collapses, masses of neutron stars, observables in heavy-
ion collisions and the interaction parameters F0 and F1 in
Landau’s Fermi liquid theory for nuclear matter. Here we
examine the most sensitive method [6,7] which is based
on experimental data on the strength function distribu-
tions of the isoscalar giant monopole resonance (ISGMR),
T = 0, L = 0, and the isoscalar giant dipole resonance
(ISGDR), T = 0, L = 1, which are compression modes
of nuclei, analyzed within the microscopic random-phase
approximation (RPA) [8].

Over the last three decades, a significant amount of
experimental work was carried out to identify strength
distributions of the ISGMR and ISGDR in a wide range
of nuclei [9–12]. The main experimental tool for studying
isoscalar giant resonances is inelastic α-particle scatter-
ing. This is mainly because i) α-particles are selective as
to exciting isoscalar modes, and ii) angular distributions of
inelastically scattered α-particles at small angles are char-
acteristic for some of the multipolar modes. Recent devel-
opment in the area of experimental investigation of the
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isoscalar giant resonances made it possible to measure the
centroid energy (that is, the ratio of the energy-weighted
and non–energy-weighted sum rules, m1/m0) E0 of the
ISGMR with an error δE0 ∼ 0.1–0.3MeV [11,12]. Using
the relation (δK)/K = 2(δE0)/E0 and, for example, the
recent experimental value of E0 = 13.96±0.20MeV for the
ISGMR in 208Pb, one has an error of δK = 6–9MeV for
K = 200–300MeV. This enhanced experimental precision
calls for a critical accuracy check of the theoretical cal-
culations. In fact, many available theoretical calculations,
in which the monopole centroid is also determined only
within about 0.2MeV, due to various approximations, in-
troduce a further contribution to δK which must be added
quadratically to the experimental one, yielding a total er-
ror of 8–13MeV (see [13]).

The extraction of K from experimental data on
ISGMR is not straightforward. There have been several
attempts [9] in the past to determine K simply by a least
square fit to the ISGMR data of various sets of nuclei using
a semi-empirical expansion in power of A−1/3 of the nu-
cleus incompressibility coefficient, KA, obtained from E0

using, for example, the scaling model assumption (we re-
mind here that in the scaling model a simple shape of the
ground-state density ρ0 is assumed and its changes are as-
sociated to a single parameter λ, i.e., they are of the type
ρ0 → ρλ(r) = 1

λ3 ρ0(
r

λ )). It was found [9] that the value
deduced for K varied significantly, depending on the set of
data of the ISGMR energies used in the fit. This is mainly
due to the limited number of nuclei in which E0 is known.
We also point out that the scaling model assumption is
not very reliable for medium and light nuclei.

If we have to resort to theory in order to extract K,
we should start by discussing some principle remarks. The
static incompressibility coefficient K of eq. (2) describes
the propagation of the first sound excitations in nuclear
matter having the sound velocity

c = c1 =
√

K/9m. (3)

However, the propagation of the first sound implies the
regime of frequent inter-particle collisions [14] which is
not realized in cold (and moderately heated) nuclei, where
the compression modes are related to the zero sound (rare
inter-particle collisions) regime. It is necessary to note that
the sound velocity c and the eigenfrequency ω of the com-
pression mode are, in principle, directly related to K for
the first sound mode only. In general, the sound velocity
c is a complicated function of both the incompressibility
coefficient K and the dimensionless collisional parameter
ωτ , where ω is the frequency of the mode and τ is its relax-
ation time. This complicated dependence is caused by the
dynamic distortion of the Fermi surface (FSD) which ac-
companies the collective motion in a Fermi liquid. In cold
nuclear matter, for the rare-collision regime ωτ →∞, one
has, instead of eq. (3), the relation

c = c0 =
√

K ′/9m, (4)

where K ′ is a strongly renormalized incompressibility co-
efficient which can be shown to obey [15]

K ′ ≈ 3K. (5)

Thus, within the theory of Fermi liquids, there is a signif-
icant difference between the static nuclear incompressibil-
ity coefficient, K, which is defined as the stiffness coeffi-
cient with respect to a change in the bulk density, and the
dynamic one, K ′, associated with the zero sound veloc-
ity and the energy of the ISGMR or ISGDR. Nonetheless,
the approximate relation (5) is consistent with the idea
that the interaction which best fits the experimental data
for ISGMR and ISGDR energies should also provide the
correct value of K.

It can also be shown [15] that the consistent pres-
ence of the same FSD effects in the boundary condition
strongly suppresses any increase of E0 (the energy of low-
est isoscalar giant monopole resonance) compared to the
usual liquid-drop model where the FSD effects are not
taken into account. We point out that the FSD effects
are completely washed out from the dynamic incompress-
ibility coefficient K ′ in the case of the scaling assump-
tion. Note also that the effect of the FSD in the bound-
ary condition is rather small for the overtone excitations.
The dynamic and relaxation effects on the ISGMR and
on the ISGDR are therefore significantly different. In con-
trast to the ISGMR, which is the lowest breathing mode,
the ISGDR appears as the overtone to the lowest isoscalar
dipole excitation, which corresponds to a spurious center-
of-mass motion. Due to this fact, the energy of the ISGDR,
E1, varies with τ much more than the energy E0 of the
ISGMR.

If one wishes to make a link with microscopic effective
interactions, the basic theory for the description of differ-
ent giant resonance modes is self-consistent Hartree-Fock
(HF) plus RPA [6,8]. The HF calculations using Skyrme-
type interactions [16], which are density- and momentum-
dependent zero-range interactions, have been very suc-
cessful in reproducing experimental data on ground-state
properties of nuclei. The parameters of the Skyrme inter-
action are varied so as to reproduce a selected set of exper-
imental data of a wide range of nuclei on nuclear masses,
charge and mass density distributions, etc. The nuclear re-
sponse function is evaluated within RPA, which is a linear
response theory suited for the description of small oscilla-
tions which can eventually accomodate a proper treatment
of the particle continuum [8,17].

We emphasize that the values of E0 and E1 are cor-
related with the value of K which is associated with
the effective nucleon-nucleon interaction adopted in the
HF-RPA calculations, and thus can be used to extract an
accurate value for K. This correlation has been explicitly
shown, e.g., in refs. [18,19].

It is important to point out that the HF-RPA method
solves the nuclear effective Hamiltonian in the space of
one-particle–one-hole (1ph) excitations. Correlations, as-
sociated with excitations of 2ph and higher structures, are
not accounted for explicitly. The effects of these correla-
tions have been discussed in the literature, see for example
the reviews in refs. [20–22]. The main effect is a collisional
broadening of the strength distributions which can be ac-
companied by a certain shift of the resonance peak posi-
tion. This shift grows with excitation energy and can be
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of the order of 1MeV for the rather high-lying isovector
modes (in the range above 20MeV). However, in the case
of the ISGMR the shift is quite small (of the order of few
hundreds of keV [23], that is, comparable with the ex-
perimental uncertainty). This is not a numerical accident,
rather a consequence of cancellations which arise when all
diagrams corresponding to the coupling between 1ph and
2ph states are included (cf. [20] and references therein).

The first experimental identification of the ISGMR
in 208Pb at excitation energy of E0 = 13.7MeV [24] al-
ready triggered random-phase approximation (RPA) cal-
culations using existing or modified effective interactions:
those having K = 210±30MeV gave results in agreement
with experiment [25]. We point out, however, that i) in the
early investigations, the experimental uncertainties for E0

were relatively large, and only a limited class of effective
interactions were explored; ii) many more recent calcula-
tions were not fully self-consistent [13,26]. Consequently,
as we will see, we accept nowadays larger values for K.

The study of the isoscalar giant dipole resonance is
very important since this compression mode provides an
independent source of information onK. Early experimen-
tal investigation of the ISGDR in 208Pb resulted in a value
of E1 ∼ 21MeV for the centroid energy [27,28]. It was first
pointed out in ref. [29] that corresponding HF-RPA results
for E1, obtained with interactions adjusted to reproduce
experimental values of E0, are higher than the experimen-
tal value by more than 3MeV and thus this discrepancy
between theory and experiment raises some doubts con-
cerning the unambiguous extraction of K from energies
of compression modes. A similar result for E1 in 208Pb
was obtained in more recent experiments [10,30]. There-
fore, the value ofK deduced from these early experimental
data on ISGDR is significantly smaller than that deduced
from ISGMR data.

Recent relativistic RPA (RRPA) calculations [31,32],
with the inclusion of negative-energy states of the Dirac
sea in the response function, yield a value of K =
250–270MeV. This result has been obtained using differ-
ent types of effective Lagrangians, including those having
density-dependent coupling constants. Note that since an
uncertainty of about 20% in the values ofK is tantamount
to an uncertainty of 10% in the value of E0, the discrep-
ancy in the value of K obtained from relativistic and non-
relativistic models is quite significant in view of the ac-
curacy of about 2% in the experimental data currently
available on the ISGMR centroid energies. In refs. [19,33]
it has been claimed that these significant differences are
due to the model dependence of K. However, in the most
recent works of refs. [13,34,35] this model dependence has
been explained, as we shall discuss.

We should finally point out that it is quite common
in theoretical work on giant resonances to calculate the
strength function S(E) for a certain simple scattering op-
erator F , whereas in the analysis of experimental data of
the excitation cross-section σ(E) one carries out distorted-
wave Born approximation (DWBA) calculations with a
transition potential δU obtained from a collective model
transition density ρcoll using the folding model (FM) ap-

proximation. This may be a source of uncertainties, espe-
cially if most of the strength is not collective. Accord-
ingly, it is important to examine the relation between
S(E) and the excitation cross-section σ(E) of the IS-
GMR and the ISGDR, obtained by α-scattering, using
the folding model DWBA method with ρt obtained from
self-consistent HF-RPA.

In sect. 2 we review the basic elements of the micro-
scopic HF-RPA theory for the strength function and the
FM-DWBA method for the calculation of the excitation
cross-sections of giant resonances by inelastic α-scattering.
In sect. 3, we provide some results of the consequences of
violations of self-consistency on the calculated strength
function S(E), the excitation cross-section σ(E) and re-
cent results of fully self-consistent HF-RPA calculations
of the centroid energies (E0 and E1) for the ISGMR and
ISGDR. We also present simple explanations for the dis-
crepancies in the values deduced for K. Our conclusions
are given in sect. 4.

2 Formalism

2.1 Self-consistent HF-RPA approach

In the microscopic and self-consistent HF-RPA approach,
one starts by adopting a specific effective nucleon-nucleon
interaction, V12, and deriving the ground-state mean field.
Then, the RPA equations are solved by using the particle-
hole (p-h) interaction Vph which is derived from the same
mean field determined by V12 (in this sense, the calculation
is self-consistent). Various numerical methods have been
adopted in the literature to solve the RPA equations, see,
for example, refs. [8,17,25,36,37]. In particular, in Green’s
function approach [8,17] one evaluates the RPA Green’s
function G, given by G = G0(1 + VphG0)

−1, where G0 is
the free p-h Green’s function. Then, the strength function
S(E) and the transition density ρt, associated with the

scattering operator F =
A
∑

i=1

f(ri), are obtained from

S(E) =
∑

n

|〈0|F |n〉|
2
δ(E − En) =

1

π
Im [Tr(fGf)] , (6)

ρt(r, E) =
∆E

√

S(E)∆E

∫

f(r′)

[

1

π
ImG(r′, r, E)

]

dr′. (7)

Note that ρt(r, E), as defined in (7), is associated with
the strength in the region of E ±∆E/2. Green’s function
approach allows treating the continuum in a proper way.
However, the RPA equations can also be solved on a dis-
crete basis. Although the exact solution of RPA in the con-
tinuum may be crucial if one treats weakly bound nuclei
or if one is interested in the particle decay of states which
lie above the threshold, discrete RPA can nonetheless re-
produce the main integral properties of giant resonances
in stable nuclei.

There are also alternative methods to obtain these
integral properties. For instance, the constrained energy
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E−1 defined as
√

m1/m−1, where m1 is the energy-
weighted sum rule and m−1 is the inverse energy-weighted
sum rule, can be calculated once m1 is extracted from the
double commutator [F, [H,F ]] whilem−1 is obtained from
constrained HF (CHF) calculations [38].

In fully self-consistent HF-RPA calculations, the spu-
rious state (associated with the center-of-mass motion)
T = 0, L = 1 must appear at zero excitation energy
(E = 0), aside from small numerical inaccuracies, and
no significant spurious state mixing (SSM) in the ISGDR
must be expected. However, although not always stated in
the literature, many actual implementations of HF-RPA
(and relativistic RPA) are not fully self-consistent [26]
(see, however, refs. [18,36,37,39–42]). Each approxima-
tion introduced in RPA may shift the centroid energies
of giant resonances with respect to the exact value, and
introduce a SSM in the ISGDR.

In refs. [26,43,44], in order to correct for the effects of
the SSM on S(E) and the transition density, the scattering

operator F =
A
∑

i=1

f(ri) has been replaced by the projection

operator

Fη =

A
∑

i=1

fη(ri) =

A
∑

i=1

f(ri)− ηf1(ri), (8)

where f(r) = f(r)Y1M (Ω) and f1(r) = rY1M (Ω). The
value of η is obtained from the coherent spurious state
transition density [45], ρss(r) = αa

∂ρ0

∂r Y1M (Ω), where ρ0

is the ground-state density of the nucleus. The result for
f(r) = r3 is η = 5

3 〈r
2〉 [46]. We point out that the IS-

GDR transition density ρt is obtained [26] from eqs. (7)
and (8) after subtracting the spurious state component
ρss. In ref. [47] it has been shown that the above proce-
dure is equivalent to project out explicitly the spurious
component from each excited state. Further discussions
about the SSM can be found in refs. [48,49].

2.2 DWBA calculations of excitation cross-sections

The DWBA has been quite instrumental in providing a
theoretical description of low-energy scattering reactions
and is widely used in analyzing measured cross-sections of
scattered probes. The folding model approach [50] to the
evaluation of optical potentials appears to be quite suc-
cessful and, at present, is extensively used in theoretical
descriptions of α-particle scattering [51]. The main advan-
tage of this approach is that it provides a direct link to
the description of α-particle scattering reactions based on
microscopic HF-RPA results.

The DWBA differential cross-section for the excitation
of a giant resonance by inelastic α-scattering is

dσDWBA

dΩ
=

(

µ

2πh̄2

)2
kf
ki
|Tfi|

2
, (9)

where µ is the reduced mass and ki and kf are the initial
and final linear momenta of the α-nucleus relative motion,

respectively. The transition matrix element Tfi is given by

Tfi =
〈

χ
(−)
f Ψf |V |χ

(+)
i Ψi

〉

, (10)

where V is the α-nucleon interaction, Ψi and Ψf are the

initial and final states of the nucleus, and χ
(+)
i and χ

(−)
f

are the corresponding distorted wave functions of the rel-
ative α-nucleus relative motion, respectively. To calculate
Tfi, eq. (10), one can adopt the following approach which
is usually employed by experimentalists. First, assuming
that Ψi and Ψf are known, the integrals in (10) over the
coordinates of the nucleons are carried out to obtain the
transition potential δU ∼

∫

Ψ∗

f V Ψi. Second, the cross-

section (9) is calculated using a certain DWBA code with
δU and the optical potential U(r) as input.

Within the FM approach, the optical potential U(r) is
given by

U(r) =

∫

dr′V (|r− r
′|, ρ0(r

′))ρ0(r
′), (11)

where V (|r−r
′|, ρ0(r

′)) is the α-nucleon interaction, which
is generally complex and density dependent, and ρ0(r

′) is
the ground state HF density of a spherical target nucleus.
To obtain the results given in the following, both the real
and imaginary parts of the α-nucleon interaction were cho-
sen to have Gaussian forms with density dependence [51],
and parameters determined by a fit to the elastic scat-
tering data. The radial form δUL(r, E) of the transition
potential, for a state with the multipolarity L and excita-
tion energy E, is obtained from:

δU(r, E) =

∫

dr′δρL(r
′, E)

[

V (|r− r
′|, ρ0(r

′))

+ρ0(r
′)
∂V (|r− r

′|, ρ0(r
′))

∂ρ0(r′)

]

, (12)

where δρL(r
′, E) is the transition density for the consid-

ered state.
We point out that within the “microscopic” folding

model approach to the α-nucleus scattering, both ρ0 and
ρL, which enter eqs. (11) and (12), are obtained from
the self-consistent HF-RPA calculations (i.e., ρL = ρt, cf.
eq. (7)). Within the “macroscopic” approach, one adopts
collective transition densities, ρcoll, which are assumed to
have energy-independent radial shapes and are obtained
from the ground-state density using a collective model.
We stress that for a proper comparison between experi-
mental and theoretical results for S(E), one should adopt
the “microscopic” folding model approach in the DWBA
calculations of σ(E).

3 Results and discussion

3.1 Consequences of the violation of self-consistency

Recently, the effects of common violations [26] of self-
consistency in HF-RPA calculations of S(E) and ρt of
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Fig. 1. Isoscalar strength functions of 208Pb for L = 0–3 mul-
tipolarities are displayed. SC (full line) corresponds to the fully
self-consistent calculation, whereas LS (dashed line) and CO
(dotted line) represent the calculations without the residual
spin-orbit and Coulomb interactions in the RPA, respectively.
The interaction SGII [56] was used (taken from [54]).

various giant resonances were investigated in detail, see
for example refs. [39–41,52–54]. To demonstrate the im-
portance of carrying out fully self-consistent calculations,
we present in fig. 1 recent results for S(E) of isoscalar giant
resonances in 208Pb with multipolarities L = 0–3 using the
fully self-consistent method described in refs. [36,55]. The
interaction SGII [56] was used. It is seen (see also ref. [54])
from fig. 1 that the effects of violation of self-consistency
due to the neglect of the particle-hole (p-h) spin-orbit or
Coulomb interactions in the RPA calculations are most
significant for the ISGMR. For the ISGMR in 208Pb the
shift in the centroid energy E0 is about 0.8MeV, which is
3 times larger than the experimental uncertainty. This is
in agreement with fig. 1 of ref. [13], where a similar shift
for E−1 has been obtained by means of CHF calculations.

We note that a shift of 0.8MeV in E0 correspond to a
shift of about 25MeV in K. In fact, this shift completely
solves the issue of the previously advocated disagreement
between values of K extracted from Skyrme and Gogny
calculations. Fully self-consistent Skyrme calculations em-
ploying existing parametrizations do not point any more
to the value of about 210MeV quoted in the introduc-
tion, but to about 235MeV in clear agreement with the
Gogny-based extraction of K.
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Fig. 2. Reconstruction of the ISGDR EWSR in 116Sn from
the inelastic α-particle cross-section. Middle panel: maximum
double differential cross section obtained from ρt (RPA). Lower
panel: maximum cross-section (0◦) obtained with ρcoll (dashed
line) and ρt (solid line) normalized to 100% of the EWSR.
Upper panel: the solid and dashed lines are the ratios of the
middle panel curve with the solid and dashed lines of the lower
panel, respectively (taken from ref. [26]).

3.2 Nuclear compressibility from ISGMR and ISGDR

In contrast with the ISGMR, which presents a single peak,
as a rule, in heavy nuclei, the dipole response displays a
low-lying, fragmented part which lies below the giant res-
onance. This is a systematic feature of experimental and
theoretical results in a number of isotopes. Different the-
oretical calculations [47,57] agree in indicating that the
low-lying strength is not collective. In fact, while the cen-
troids of the high-energy region, if calculated with interac-
tions associated with different values ofK, scale with these
values, the centroids of the low-energy region do not. As
far as the giant resonance centroid is concerned, discrete
and continuum [58] RPA results are in good agreement
with each other in 208Pb. Coupling with 2ph-type config-
urations is in this case relevant, as it shifts the centroid
downwards by 1MeV (leading to good agreement with
experimental data) and produces a conspicous spreading
width of about 6MeV [59].

In refs. [26,60], numerical calculations were carried
out for the S(E), ρt(r) within the HF-RPA theory and
for σ(E) as well, using the FM-DWBA method. The
SL1 Skyrme interaction [61], which is associated with
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Table 1. Fully self-consistent HF-RPA results [54] for the IS-
GDR centroid energy (in MeV) in 90Zr and 208Pb, obtained
using the interactions SGII [56] and SK255 [34], compared with
the RRPA results obtained [19] with the NL3 interaction [62].
Also given are the values of K, and of the symmetry energy at
saturation, J . The range of integration ω1–ω2 is given in the
second column. The experimental data are from ref. [10] (a),
ref. [11] (b), ref. [12] (c) and ref. [63] (d).

Nucleus ω1–ω2 Experiment NL3 SGII SK255

90Zr 18–50 25.7± 0.7a 32.0 28.8 29.2
26.7± 0.5b

26.9± 0.7d

208Pb 16–40 19.9± 0.8a 26.0 24.1 24.5
22.2± 0.5c

22.7± 0.2d

K (MeV) 272 215 255
J (MeV) 37.4 26.8 37.4

K = 230MeV, was employed. The density-dependent
Gaussian α-nucleon interaction discussed in sect. 2.2 was
used with parameters adjusted to reproduce the elastic
cross-section, with ρ0 taken from the HF calculations. In
fig. 2, we present the results of this microscopic calculation
of the fraction of the energy-weighted sum rule, and the
excitation cross-section σ(E) of the ISGDR in 116Sn by
240MeV α-particle scattering. It is seen from the upper
panel that the use of the collective model transition den-
sities ρcoll in the whole energy range increases the EWSR
by about 15%. However, the shift in the centroid energy is
small (a few percents), similar in magnitude to the current
experimental uncertainties. It was first pointed out in [26]
that an important result of the calculation is that the max-
imum cross-section for the ISGDR decreases strongly at
high energy and may drop below the experimental sensi-
tivity for excitation energies above 30MeV. This high ex-
citation energy region contains about 20% of the EWSR.
This missing strength leads to a reduction of about
3.0MeV in the ISGDR energy which can significantly af-
fect the comparison between theory and experiment.

In table 1, we give the results of fully self-consistent
HF-RPA calculations for the ISGDR centroid energy (E1)
obtained (see ref. [54]) using the SGII [56] and SK255 [34]
interactions and compare them with the RMF-based RPA
results of ref. [57] for the NL3 interaction [62] and with the
experimental data. The SGII result in 208Pb compares well
with 23.9MeV obtained using discrete RPA in ref. [47] and
with 23.4MeV obtained using continuum RPA in ref. [48].
Note that the HF-RPA values for E1 are larger than the
corresponding experimental values of the early measure-
ments of refs. [10,27,28,30] by more than 3MeV. The
more recent results of refs. [11,12,63,64], seem to better
agree.

3.3 Nuclear compressibility in relativistic and
non-relativistic models

To properly compare between the predictions of the rel-
ativistic and the non-relativistic models, parameter sets

Table 2. The same as table 1 for the ISGMR. Experimental
data are taken from refs. [11,12].

Nucleus ω1–ω2 Experiment NL3 SGII SK255

90Zr 0–60 18.7 17.9 18.9
10–35 17.81± 0.30 17.9 18.9

208Pb 0–60 14.2 13.6 14.3
10–35 13.96± 0.20 13.6 14.4

for Skyrme interactions were generated in ref. [34] by a
least-square fitting procedure using exactly the same ex-
perimental data for the bulk properties of nuclei consid-
ered in ref. [62] for determining the NL3 parameteriza-
tion of the effective Lagrangian used in the relativistic
mean-field (RMF) models. The center-of-mass correction
to the total binding energy, finite-size effects of the pro-
tons and Coulomb energy were calculated in a way similar
to that employed in determining the NL3 parameter set
in ref. [62]. Further, the values of the symmetry energy at
saturation (J) and the charge rms radius of the 208Pb nu-
cleus were constrained to be very close to 37.4MeV and
5.50 fm, respectively, as obtained with the NL3 interac-
tion, and K was fixed in the vicinity of the NL3 value of
K = 271.76MeV. In particular, the Skyrme interactions
SK272 and SK255, having K = 272 and 255MeV, respec-
tively, were generated in ref. [34]. It is seen from table 2
that the new Skyrme interaction SK255 yields for the IS-
GMR centroid energies (E0) values which are close to the
RRPA results obtained for the NL3 interaction, in good
agreement with experimental data.

To better understand this result, a more systematic
analysis has been made in ref. [35], in which a larger set
of new Skyrme forces has been generated, built with the
same protocol used for the Lyon forces [65] and spanning
a wide range of values for K, for the symmetry energy at
saturation and its density dependence. The main conclu-
sions reached in that work are the following. The ISGMR
energies, calculated by means of CHF, and consequently
the extracted value of K, depend on a well-defined pa-
rameter (Ksym) which controls the slope of the symmetry
energy curve as a function of density. The Skyrme forces
having a density dependence characterized by an expo-
nent α = 1/6, like SLy4, predict K around 230–240MeV.
If this exponent is increased to values of the order of 1/3,
and consequently the slope of the symmetry energy curve
is made stiffer, one can produce forces which are compat-
ible with K around 250–260MeV. This result, obtained
within the framework of a different protocol for fitting the
Skyrme parameters, is nonetheless in full agreement with
the result of [34]. The main results of ref. [35] are shown in
fig. 3. It has to be noted that a further increase of α, and
accordingly of K, would become difficult to obtain since
the effective mass m∗ would become too small.

One thus can make the clear and strong conclusion
that the difference in the values of K obtained in the rel-
ativistic and non-relativistic models is not due to model
dependence. It is mainly due to the different behavior of
the symmetry energy within these models (cf. also [66]).
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Fig. 3. Constrained ISGMR energies E−1 in
208Pb obtained by

using the Skyrme forces built in ref. [35], and having α = 1/6
(upper panel) or α = 0.3563 (lower panel). The two horizontal
lines denote the experimental upper and lower bounds. See the
text for a discussion (figure taken from ref. [35]).

4 Conclusions

Considering the status of determining the value of the
nuclear-matter incompressibility coefficient, K, from data
on the compression modes ISGMR and ISGDR of nuclei,
we conclude that:

i) Recent improvement in the experimental techniques
led to the identification of the ISGMR in light and medium
nuclei and the observation of the ISGDR in nuclei. Cur-
rently, the centroid energy E0 of the ISGMR can be de-
duced with very small experimental uncertainty of about
0.2MeV, which corresponds to an uncertainty of about
7MeV in the extracted value of K.

ii) Violations of self-consistency in HF-RPA calcula-
tions of the strength functions of giant resonances result
in shifts in the calculated values of the centroid energies
which may be larger in magnitude than the current ex-
perimental uncertainties. Thus, it is important to carry
out fully self-consistent HF-RPA calculations in order to
extract an accurate value of K from experimental data on
the ISGMR and ISGDR. In fact, the prediction of K lying
in the range 210–220MeV were coming from not fully self-

consistent Skyrme calculations. Correcting for this draw-
back, Skyrme parametrizations of the SLy4 type predict
values of K in the range 230–240MeV.

iii) It is possible to build bona fide Skyrme forces so
that the incompressibility is close to the relativistic value,
namely 250–270MeV.

iv) Therefore, from the ISGMR experimental data the
conclusion can be drawn that K = 240 ± 20MeV. The
uncertainty of about 20MeV in the value of K is mainly
due to the uncertainty in the value of the overall shape of
the nuclear-matter symmetry energy curve, as a function
of density.

v) The ISGDR data tend to point to lower values for
K. However, there is consensus that the extraction of K
is in this case more problematic for different reasons. In
particular, the maximum cross-section for the ISGDR de-
creases very strongly at high excitation energy and may
drop below the current experimental sensitivity for exci-
tation energies above 30 and 26MeV for 116Sn and 208Pb,
respectively. More accurate experimental data, and anal-
ysis, on the ISGDR are very much needed.
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